Ankrd17 positively regulates RIG-I-like receptor (RLR)-mediated immune signaling.
نویسندگان
چکیده
Retinoic acid-inducible gene-I (RIG-I)-like receptors (RLRs), such as RIG-I, melanoma differentiation-associated gene 5 (MDA5), and virus-induced signaling adaptor (VISA), are intracellular molecules that sense diverse viral RNAs and trigger immune responses. In this study, we demonstrate that the ankyrin repeat protein ankrd17 interacts with RIG-I, MDA5, and VISA and upregulates RLR-mediated immune signaling. Overexpression of ankrd17 enhances RLR-mediated activation of IRF-3 and NF-κB and upregulates the transcription of IFN-β. It also promotes RLR signaling in response to poly (I:C), influenza virus RNA, and Sendai virus. Consistently, knockdown of ankrd17 impairs RLR signaling. Furthermore, we demonstrate that ankrd17 enhances the interaction of RIG-I and MDA5 with VISA; the ankyrin repeat domain of ankrd17 is required for its interaction with RIG-I as well as for its function in regulating the RLR pathway. Taken together, our results indicate that ankrd17 is a positive regulator of the RLR signaling pathway.
منابع مشابه
The E3 Ubiquitin Ligase Triad3A Negatively Regulates the RIG-I/MAVS Signaling Pathway by Targeting TRAF3 for Degradation
The primary role of the innate immune response is to limit the spread of infectious pathogens, with activation of Toll-like receptor (TLR) and RIG-like receptor (RLR) pathways resulting in a pro-inflammatory response required to combat infection. Limiting the activation of these signaling pathways is likewise essential to prevent tissue injury in the host. Triad3A is an E3 ubiquitin ligase that...
متن کاملDDX24 Negatively Regulates Cytosolic RNA-Mediated Innate Immune Signaling
RIG-I-Like Receptors (RLRs) sense cytosolic viral RNA to transiently activate type I IFN production. Here, we report that a type I IFN inducible DExD/H helicase, DDX24, exerts a negative-regulatory effect on RLR function. Expression of DDX24 specifically suppressed RLR activity, while DDX24 loss, which caused embryonic lethality, augmented cytosolic RNA-mediated innate signaling and facilitated...
متن کاملRIG-I-like receptor activation by dengue virus drives follicular T helper cell formation and antibody production
Follicular T helper cells (TFH) are fundamental in orchestrating effective antibody-mediated responses critical for immunity against viral infections and effective vaccines. However, it is unclear how virus infection leads to TFH induction. We here show that dengue virus (DENV) infection of human dendritic cells (DCs) drives TFH formation via crosstalk of RIG-I-like receptor (RLR) RIG-I and MDA...
متن کاملMolecular basis for ebolavirus VP35 suppression of human dendritic cell maturation.
UNLABELLED Zaire ebolavirus (EBOV) VP35 is a double-stranded RNA (dsRNA)-binding protein that inhibits RIG-I signaling and alpha/beta interferon (IFN-α/β) responses by both dsRNA-binding-dependent and -independent mechanisms. VP35 also suppresses dendritic cell (DC) maturation. Here, we define the pathways and mechanisms through which VP35 impairs DC maturation. Wild-type VP35 (VP35-WT) and two...
متن کاملPattern Recognition and Signaling Mechanisms of RIG-I and MDA5
Most organisms rely on innate immune receptors to recognize conserved molecular structures from invading microbes. Two essential innate immune receptors, RIG-I and MDA5, detect viral double-stranded RNA in the cytoplasm. The inflammatory response triggered by these RIG-I-like receptors (RLRs) is one of the first and most important lines of defense against infection. RIG-I recognizes short RNA l...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- European journal of immunology
دوره 42 5 شماره
صفحات -
تاریخ انتشار 2012